The Electrical Properties of Hybrid Composites Based on Multiwall Carbon Nanotubes with Graphite Nanoplatelets

نویسندگان

  • Yulia Perets
  • Lyudmila Aleksandrovych
  • Mykola Melnychenko
  • Oleksandra Lazarenko
  • Lyudmila Vovchenko
  • Lyudmila Matzui
چکیده

In the present work, we have investigated the concentration dependences of electrical conductivity of monopolymer composites with graphite nanoplatelets or multiwall carbon nanotubes and hybrid composites with both multiwall carbon nanotubes and graphite nanoplatelets. The latter filler was added to given systems in content of 0.24 vol%. The content of multiwall carbon nanotubes is varied from 0.03 to 4 vol%. Before incorporation into the epoxy resin, the graphite nanoplatelets were subjected to ultraviolet ozone treatment for 20 min. It was found that the addition of nanocarbon to the low-viscosity suspension (polymer, acetone, hardener) results in formation of two percolation transitions. The percolation transition of the composites based on carbon nanotubes is the lowest (0.13 vol%).It was determined that the combination of two electroconductive fillers in the low-viscosity polymer results in a synergistic effect above the percolation threshold, which is revealed in increase of the conductivity up to 20 times. The calculation of the number of conductive chains in the composite and contact electric resistance in the framework of the model of effective electrical resistivity allowed us to explain the nature of synergistic effect. Reduction of the electric contact resistance in hybrid composites may be related to a thinner polymer layer between the filler particles and the growing number of the particles which take part in the electroconductive circuit.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrical Properties of Composite Materials with Electric Field-Assisted Alignment of Nanocarbon Fillers

The article reports about electric field-induced alignment of the carbon nanoparticles embedded in epoxy matrix. Optical microscopy was performed to consider the effect of the electric field magnitude and configuration, filler morphology, and aspect ratio on alignment process. Characteristic time of aligned network formation was compared with modeling predictions. Carbon nanotube and graphite n...

متن کامل

Electrical properties of UHMWPE/graphite nanoplates composites obtained by in-situ polymerization method

There are described nanocomposites based on ultra high molecular weight polyethylene and graphite nanoplates prepared by in-situ polymerization method. It is carried out a comprehensive study of electric properties of these composites, including direct current (dc) and alternating current (ac) properties. There is explored dependence of the conductivity and dielectric permeability on filler con...

متن کامل

Percolation Threshold of Polymer Nanocomposites Containing Graphite Nanoplatelets and Carbon Nanotubes

An improved analytical model is developed based on an interparticle distance concept, to predict the percolation threshold of conducting polymer composites containing graphite nanoplatelets (GNPs) and carbon nanotubes (CNTs). GNPs are modeled as well-dispersed, disc-shaped cylinders, while CNTs were modeled as either well-dispersed sticks or sphere-shaped CNT agglomerates with a higher CNT conc...

متن کامل

Electrical and electromagnetic properties of isolated carbon nanotubes and carbon nanotube-based composites

Isolated carbon nanotubes (CNTs), CNT films and CNT-polymer nanocomposites are a new generation of materials with outstanding mechanical, thermal, electrical and electromagnetic properties. The main objective of this article is to provide a comprehensive review on the investigations performed in the field of characterizing electrical and electromagnetic properties of isolated CNTs and CNT-reinf...

متن کامل

Synergistic Enhancement of the Percolation Threshold in Hybrid Polymeric Nanocomposites Based on Carbon Nanotubes and Graphite Nanoplatelets

Synergistic effect causes significant decreasing of the percolation threshold in the ternary polymer composites filled with carbon nanotubes (CNT) and graphite nanoplatelets (GNP) in comparison with binary ones. Enhancement of the percolation threshold strongly depends only on the relative aspect ratios of the filler particles due to the formation of the bridges between puddles of the different...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017